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Abstract—Detecting illicit workloads on High Performance
Computing (HPC) systems is an important task. Such workloads
might indicate a user account is being misused, for example
to run cryptocurrency miners or password crackers. Existing
solutions use in-band collection of data, which may slow down the
workloads on the system. We present early results demonstrating
that real-time classification of HPC workloads based on out-of-
band telemetry may be possible. Further, we show a method-
dependent accuracy of greater than 99%, with the best results
achieving near-perfect classification. These results suggest that
creating a real-time classifier of HPC jobs that does not impact
system performance is possible.

Index Terms—HPC, Computer Security, Supercomputers, Ar-
tificial Intelligence, Application detection Monitoring

I. INTRODUCTION

Due to their immense computing power, High Performance
Computing (HPC) systems are targets for misuse, both by
external actors [1] and internal users [2]–[4]. Maintaining
the security of these systems is critical to nations’ ability to
forecast weather, predict the spread of disease, and predict the
movements of refugees, among other uses. In 2020, a series
of attacks [1] forced several supercomputers offline early in
the COVID-19 pandemic, preventing their use for pandemic
forecasting and demonstrating how critical these systems are
to national security.

Security controls in HPC are complicated to implement, as
”[T]here is a reluctance . . . to agree to any solution that might
impose overhead on the system” [5]. Therefore, HPC systems
often have significant security protecting the outside of the
system (e.g.: network border, user accounts), but relatively
little within the system itself. Currently, there is no solution
which allows real-time system-wide monitoring of running
HPC workloads for illicit behavior without significant negative
impacts on performance.

II. BACKGROUND

An HPC system (often called a supercomputer or a super-
computing cluster) is a set of computers (called nodes) which
can be assigned to users to run user-specified software. Typi-
cally, they have a high-performance network interconnect (e.g.:
100GiB+ Ethernet, InfiniBand, Slingshot) and some large-
volume storage accessible to all nodes in the system (e.g.: a
Lustre appliance or Ceph filesystem). They may also have fast
local storage to use as a cache (e.g.: NVME storage) and/or
accelerators (e.g.: Graphical Processing Units (GPUs), Field

Programmable Gate Arrays (FPGAs), or Tensor Processing
Units (TPUs)).

The individual nodes are typically assigned work by a batch-
scheduling system. A user specifies how many nodes, how
much time they need and what software to run. The batch
system then assigns the nodes, which then run the software.
The software the user runs is referred to as the workload or
the job.

HPC systems have many layers of security protecting them.
Many use the ScienceDMZ architecture [6], which allows
systems administrators significant flexibility in adjusting the
security measures to the risk tolerance and needs of the site.

However, HPC users will not tolerate any security measures
that significantly affect the performance of workloads on the
system – anything which causes ”excessively high energy
consumption or computational performance overhead” [5] is
unacceptable. Therefore, in practice, many HPC systems rely
primarily or entirely on the security of the network around
them.

One area of active research is the detection of malicious ac-
tion or workloads. Some of this work is based on user behavior
[7], while others examine the HPC workloads themselves. One
approach is to classify HPC workloads into categories. These
might be ”malicious” and ”not malicious” or more specific
to the software being run on the system. Primarily, workload
classification has been performed on specific technologies,
for example MPI [8]–[11]. However, work has also been
done on classification via power signatures [12], and on
general system-wide performance counters [13]. All of this
previous work relies on modifying the HPC system, either
by adding software (and therefore overhead) or by modifying
the hardware itself. Both make such solutions problematic
or impractical in the real world. Additionally, much prior
work focuses on classifying workloads after they are complete,
which is of little use for detecting ongoing security issues.

In practice, this means that HPC systems administrators
have very few options for detecting if the software running
on their systems is illicit: for example, forbidden by site
policy, malicious, or may have been run by someone who has
illegitimately logged in as a legitimate user.

One as-yet-unexplored area is the use of out-of-band teleme-
try. Out-of-band telemetry is gathered from the compute
hardware itself, and does not require running any software
in the operating system. This means data collection would
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have no impact on the performance of the workload. Primarily
out-of-band data is collected via the baseboard management
controller (BMC). The BMC is included in server/datacenter
class hardware and typically provides remote access, power
control, health monitoring and telemetry. From this interface,
a wealth of information is available, including:

• Processor metrics (e.g.: current speed, instructions per
second)

• Memory access statistics
• Sensor readings (often including temperature)
• Network packet counts
• Disk access statistics
Many manufacturers present this information via RedFish

[14], an industry-standard interface.
The remainder of this paper asks whether it is possible

to perform classification of running HPC workloads based
on out-of-band telemetry. If so, such classification could
allow real-time detection of illicit workloads on HPC systems
without any negative performance impact.

III. MOTIVATION

Much prior work exists on classifying HPC jobs, some
focusing on security purposes. However, as previously men-
tioned, existing work runs once workloads are finished and/or
using in-band metric data. Such systems are of limited utility
from a security point of view because they can only detect
security breaches after the fact. Further, they impose overhead
on the HPC system itself, slowing and reducing the utility of
legitimate HPC workloads.

In order to deploy a system to detect illicit HPC workloads
in the real world, such a system must meet two goals. First, it
must not impact the performance of the running workload.
This goal can be met by using out-of-band data sources.
Second, it must be able to detect illicit workloads while they
are running. That is, they must operate in real-time and on
workloads that are still in progress.

If both of these goals are met, this addresses the problems
of previous work and makes classification of HPC workloads
practical as a security tool.

IV. METHODOLOGY

This paper evaluates the feasibility of performing real-
time classification of HPC workloads based on out-of-band
telemetry data. At the moment, no public dataset of out-
of-band workload telemetry is available. Therefore, we first
synthesize such an out-of-band dataset from an existing in-
band dataset. We then perform classification on the jobs in
the synthesized dataset and compare results with the original
dataset. Thus, we determine if classification of HPC jobs
based on out-of-band data is feasible without significant loss
of precision versus in-band data. Next, we examine two
possible methods for performing classification of in-progress
(e.g.: not yet completed) HPC workloads, collecting data on
both correctness and runtime. This data is then examined to
determine if real-time classification of HPC workloads (e.g.:
performing classification as data is available without queuing

or dropping data) is feasible and what scale of resources may
be required.

A. Dataset Synthesis

We selected the Taxonomist dataset [13], [15] as a base
dataset. The Taxonomist dataset is a set of metrics collected
with LDMS [16] on Volta, a Cray XC30m at Sandia National
Laboratories. The dataset includes data for 11 benchmark
workloads. It does not include data for cryptocurrency or
password cracking workloads. This dataset is well-suited as
a base because it is representative of typical HPC workloads
running on an HPC system. Further, it collects a large number
of metrics from a variety of data sources, such that a portion
of the available data will be similar to what could be collected
via out-of-band mechanisms.

We select the RedFish [14] protocol as representative of
out-of-band telemetry collection protocols. While relatively
new, RedFish has already seen adoption in industry, for
example by major manufacturers of HPC hardware, such as in
HPE’s datacenter products [17], Intel datacenter products [18],
SuperMicro datacenter products [19], and Lenovo datacenter
products [20]. It has also seen adoption in HPC systems,
including Cray’s Shasta Systems Management software [21].
Because of the wide adoption of RedFish, we believe it
represents a reasonable baseline for the information available
via out-of-band controllers.

The Taxonomist dataset provides significant data that is
not provided by the RedFish protocol. It must therefore be
transformed before it may be used to represent the data stream
available via an out-of-band controller. After examining the
data available via RedFish and examining the data available
in the Taxonomist dataset, we determined that the following
metrics were available in the Taxonomist dataset and via out-
of-band telemetry:

• Percent of time in kernel mode
• Percent of time in user mode
• Transmitted network frames
• Blocks allocated to cache
• Free memory (in MB)
• Disk bytes read
• Power consumption (Watts)
Therefore, this data was retained and all other data was

discarded.

B. Taxonomist Comparison

Our experiment began by verifying the dataset synthesis step
did not cause a significant loss of precision when classifying
data. In order to do so, we compared the results of classifica-
tion using the synthesized dataset to those in Ates [13], which
used the Taxonomist dataset to perform classification based
on in-band data. We began by performing identical feature
engineering to Ates [13]. For each metric, we calculated the
following features over each HPC workload:

• Maximum
• Minimum
• Mean



• Standard deviation
• Skew
• Kurtosis
• 5th percentile
• 25th percentile
• 50th percentile
• 75th percentile
• 95th percentile
The data was then spit into training and validation datasets,

with the validation set comprising 20% of the total data.
The training set was used to train the same classifiers as in

Ates [13]. Each classifier was then applied to the validation
set. To match the results in Ates, any classification with a
confidence of lower than 75% was labeled as ”Unknown”.
We then calculated precision, recall, and f-score as in Ates.

C. Partial Workloads and Real-time Evaluation

Next, we evaluated classification of in-progress HPC work-
loads and determined if such classification can be performed in
real time. We evaluated several classification methods as well
as two methods for generating input vectors for classification.

First, the methods for generating input vectors. Both meth-
ods engineered the same features as used earlier.

The first method, here called Cumulative Classification, uses
the entire history of the job to the current point in time
to calculate the features. This closely matches the earlier
comparison with Ates [13] and allowed us to evaluate if
classification of in-progress workloads is viable and how
much runtime may be required before classification is viable.
However, using this strategy on real-world HPC workloads –
which may run for days – might be expensive in terms of
storage and computation.

The second method, here called Rolling Classification,
calculates the features based on a rolling window. This strategy
would likely be less computationally and storage intensive.
It may also be better able to classify HPC workloads which
change profile significantly or which have illicit software
which only runs part of the time. However, it is possible that
there may be a degradation in classification performance due
to the relatively short window.

Second, classification methods. The specific classification
methods were selected based on the best performing classifiers
in the Taxonomist comparison. The comparison evaluated
methods from two major families: Tree-based and Support
Vector Machine (SVM)-based. Those methods which per-
formed as well using out-of-band data as in-band data were
selected for evaluation here.

V. RESULTS

A. Comparison to Taxonomist Results

In order to validate that the synthesized out-of-band data
can be used for classification, we first compare the results of
classifying single data points of synthesized out-of-band data
representing entire jobs to the in-band results in Ates [13].

The results are shown in Table I.

TABLE I
COMPARISON OF RESULTS BETWEEN IN-BAND DATA AND SYNTHESIZED

OUT-OF-BAND DATA. VALUES FOR IN-BAND ARE FROM ATES [13]

Classifier Data Type Precision Recall F-Score

Random Forest In-band 1.000 1.000 1.000
Out-of-band 1.000 1.000 1.000

Extra Trees In-band 1.000 1.000 1.000
Out-of-band 1.000 1.000 1.000

Decision Tree In-band 0.998 0.998 0.998
Out-of-band 1.000 1.000 1.000

LinearSVC In-band 0.999 0.999 0.999
Out-of-band 0.987 0.904 0.942

SVC (RBF kernel) In-band 0.994 0.994 0.994
Out-of-band 0.997 0.959 0.997

These results show that the classification of the synthesized
out-of-band data is as good or better than that of the in-band
data for tree-based classifiers (RandomForest, ExtraTrees, De-
cisionTree). The performance with synthesized out-of-band
data is as good as the original in-band data for the Random
Forest and Extra Trees classifiers, and better for the Decision
Tree classifier.

For SVC-based methods the results are more mixed. The
linear SVC performs clearly worse on out-of-band data. How-
ever, the SVC using an RBF kernel shows a marginally better
precision, but much reduced recall. Overall this implies the
SVC classifiers perform worse on the synthesized out-of-band
data. This may be due to the reduced breadth of data available
to these methods.

Overall, this shows that the synthesized out-of-band data is
still viable for classification, although the use of out-of-band
data may change which classifiers are most suitable. In turn,
this demonstrates that classification of HPC workloads based
on out-of-band data collection is possible.

B. Cumulative Classification

In cumulative classification, we examine classification re-
sults for the engineered features over all previous data col-
lected for each job for each sampling window. This simulates
a system where, as each new sample comes in, the engineered
features are recalculated and classified.

We exclude SVC-based methods from evaluation here for
two reasons. First, they performed poorly with synthesized
out-of-band data, as compared to their results with in-band
data. Second, the training time for SVC-based methods grows
exponentially with the number of samples [22]. The cu-
mulative and rolling data engineering methods both create
many input samples: about 2 million samples when based
on the Taxonomist dataset. This results in exceptionally long
training time. Further, deployment to a supercomputer could
require significantly larger datasets, making the SVC-based
methods unsuitable for use in this scenario. Therefore, they
are eliminated from evaluation here.

Results for the remaining classifiers are shown in Table II.
These results exclude only the first and last 40 seconds of

runtime (as in Ates [13]). Interestingly, they show excellent



TABLE II
RESULTS OF VARIOUS CLASSIFIERS FOR CUMULATIVE ENGINEERED

FEATURES

Classifier Precision Recall F-Score Classifications
per Second

Random Forest 1.000 0.996 0.998 18,984
Extra Trees 1.000 0.999 0.999 20,336
Decision Tree 0.999 0.999 0.999 317,722

results, indicating that classification is largely successful, even
very early in workloads.

C. Rolling Classification

Next, we examine classification results for a rolling 40-
sample window of the synthesized out-of-band data. The
engineered features are calculated for each 40-sample window,
then classified. The results are shown in Table III.

TABLE III
RESULTS OF VARIOUS CLASSIFIERS FOR ROLLING 40-SAMPLE WINDOWS

Classifier Precision Recall F-Score Classifications
per second

Random Forest 1.000 1.000 1.000 18,796
Extra Trees 1.000 0.999 0.999 18,058
Decision Tree 0.996 0.996 0.996 311,165

These results show near-perfect classification for Random-
Forest and ExtraTrees classifiers, with additional excellent
results for DecisionTrees. This shows there is not a significant
loss of accuracy when using a window, versus classification
of cumulative data or versus classifying entire workloads.

VI. DISCUSSION

The results shown here demonstrate three important prereq-
uisites for performing real-time classification of HPC work-
loads based on out-of-band data.

First, they demonstrate that classification of HPC workloads
via data collected out-of-band is possible with minimal or
no loss of accuracy. This is shown via a comparison of
classification results with the synthesized out-of-band dataset
versus the Ates [13] results in Table I. In that comparison, tree-
based classifiers using simulated out-of-band data performed
as well as or better than tree-based classifiers using the original
in-band data.

Second, these results show that classification can be per-
formed on running HPC workloads with a high degree of
accuracy, even though the job is still in-progress. Much prior
work has focused on classification of HPC jobs after they are
complete. However, this approach is of little use in detecting
ongoing threats or reacting to security issues in progress.
Therefore, showing that classification is viable on ongoing/in-
progress workloads is an important step towards making HPC
workload classification a practical security tool.

Surprisingly, our results show rolling classification to be
marginally more accurate than cumulative classification. We
theorize this is because in rolling classification any outlier
values in any metric relatively quickly move outside the
window and do not affect later classifications, whereas in
cumulative classification the outlier remains in the data until
the workload finishes.

Third, measurement of classification throughput shows that
classification of HPC workloads can be performed in real time.
The throughputs measured here range from 18,058 classifica-
tions per second per core to 317,722 classifications per second
per core. One classification corresponds to one source of out-
of-band data, which corresponds to one node within the HPC
system. While HPC system node counts vary widely, Table IV
demonstrates that a single system with a relatively modest core
count would likely be sufficient to perform classification for
some of the world’s largest HPC systems, including HAWK,
located at HLRS, our home institution.

TABLE IV
HPC NODE COUNTS AND REQUIRED CORES FOR CLASSIFICATION. ALL
VALUES CALCULATED USING 18,000 CLASSIFICATIONS PER SECOND PER

CORE.

System Name June 2022 Top
500 Rank [23] Nodes

Cores required
for classification
once per second

Frontier 1 9,408 [24] 1
Fugaku 2 158,976 [24] 9
LUMI 3 2560 [25] 1
Summit 4 4,356 [23] 1
Sierra 5 4,320 [23] 1
HAWK 27 5,632 [26] 1

However, real-world performance will likely be worse than
these estimates. The estimates exclude overhead in the clas-
sification system for receiving data from out-of-band node
controllers, from calculating the vectors that are input to the
classifiers, and from interpreting the results - though all this
work could be performed on other cores within the system
performing the out-of-band analysis.

We would also make changes to the classifiers for use in
a real-world system. For example, we held the confidence
threshold at 75% in all evaluations. For a dataset in which
each point should receive a label, this is acceptable. However,
a real world system would need to deal with workloads
of an unknown type, where this may not be appropriate.
Additionally, a real-world system would prioritize correct and
timely classification of workloads – a different balance than
correctly classifying individual data points.

VII. FUTURE WORK

Our results demonstrate that machine learning on out-of-
band HPC telemetry is sufficient to classify the workloads
running on an HPC system in real-time. However, the results
are built on a dataset collected in-band, not out-of-band.
Additionally, the dataset is running benchmarks, not real
HPC workloads. Thus, while these results demonstrate the



feasibility of real-time classification of HPC workloads based
on out-of-band telemetry, significant future work remains to
demonstrate this using data collected out-of-band.

Therefore, future work will begin by collecting real out-of-
band data from a real HPC system running real workloads. It
will then demonstrate that machine learning is still an effective
method for classifying workloads and will demonstrate that the
classification may be performed in real-time. Further, it will
evaluate the resources required for classification on a real-
world system.

Additionally, the dataset we used to synthesize out-of-
band data did not include any examples of illicit workloads.
Therefore, future work must build a dataset which includes
such workloads and evaluate classifier performance for illicit
workloads.

VIII. CONCLUSION

This work demonstrates the viability of performing real-
time classification of in-progress HPC workloads, using out-
of-band data. We achieve excellent results, with some classi-
fiers performing with near-perfect accuracy. This is an impor-
tant problem, as performing such classification would allow
detection of and reaction to illicit workloads on HPC systems
(such as password crackers, cryptocurrency miners or similar
software) in real time. Prior solutions use in-band data or
require modification of hardware, limiting their utility. The use
of out-of-band data allows monitoring of the system to occur
without impact on the performance of the HPC system. Real-
time monitoring based on out-of-band data would significantly
increase the security of HPC systems and ensures these critical
national security assets are available for everything from
weather prediction to pathogen modeling and beyond.
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